

PROSPECTIVE GREEN ENERGY PROJECTS OF THE KYRGYZ REPUBLIC

Ibrayev T.O.

ENERGY SYSTEM OF THE KYRGYZ REPUBLIC

- The energy system of the Kyrgyz Republic due to the geographical characteristics is clearly divided into northern and southern parts
- Both parts are connected by lines 500 kV "Toktogul HPP Tuleberdiyev Frunzenskaya" and the 500 kV "Datka – Kemin" line passing through the territory of the Kyrgyz Republic, as well as through the Central Asian United Energy System, covering Tajikistan, Uzbekistan and Kazakhstan
- Within the structure of electricity generation, the main share is held by hydroelectric power plants (90%), most of which are located in the south of the country
- Average annual generation: electricity 14 billion kWh; thermal energy 2,000 thousand Gcal

HV line 0.4-35 kV - 59,700 km **Substation & Transformers** 26,649 units

PLANNED PROJECTS

Large and small HPPs

Wind power plants

Development of transmission networks

HYDROPOWER POTENTIAL

142.5 billion kWh

TOTAL HYDROPOWER POTENTIAL

LEADING POSITION IN CENTRAL ASIA IN TERMS OF HYDROPOWER POTENTIAL

13%

OF REALIZED POTENTIAL

ON THE NARYN RIVER POSSIBLE TO CONSTRUCT:

7 cascades

27 hydro power plants

6,435.4 MW

Total installed capacity

22,555 billion kWh

Average long-term annual generation

KANBARATA HPP-1

MAIN PROJECT PARAMETERS KAMBARATA HPP-1

Installed capacity MW

Annual generation million kWh

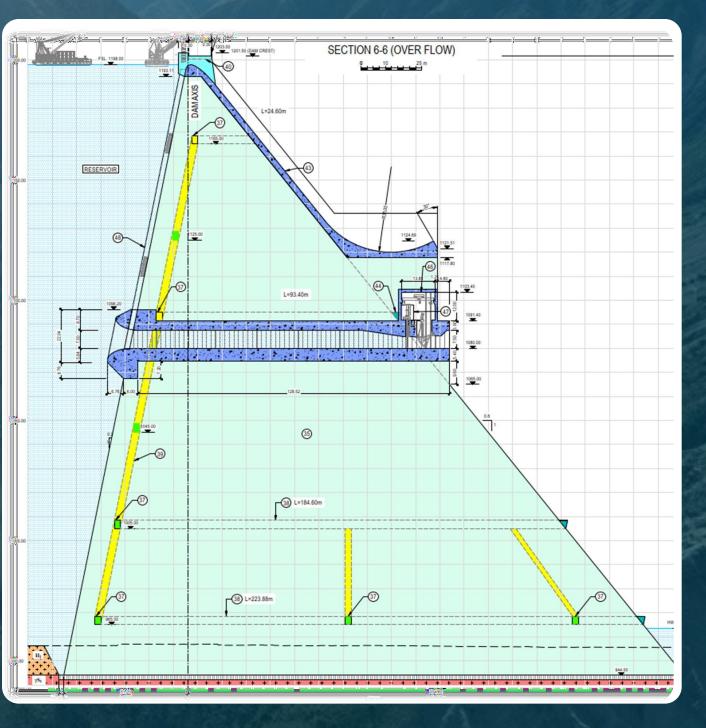
6,000

3,512

5,460

256

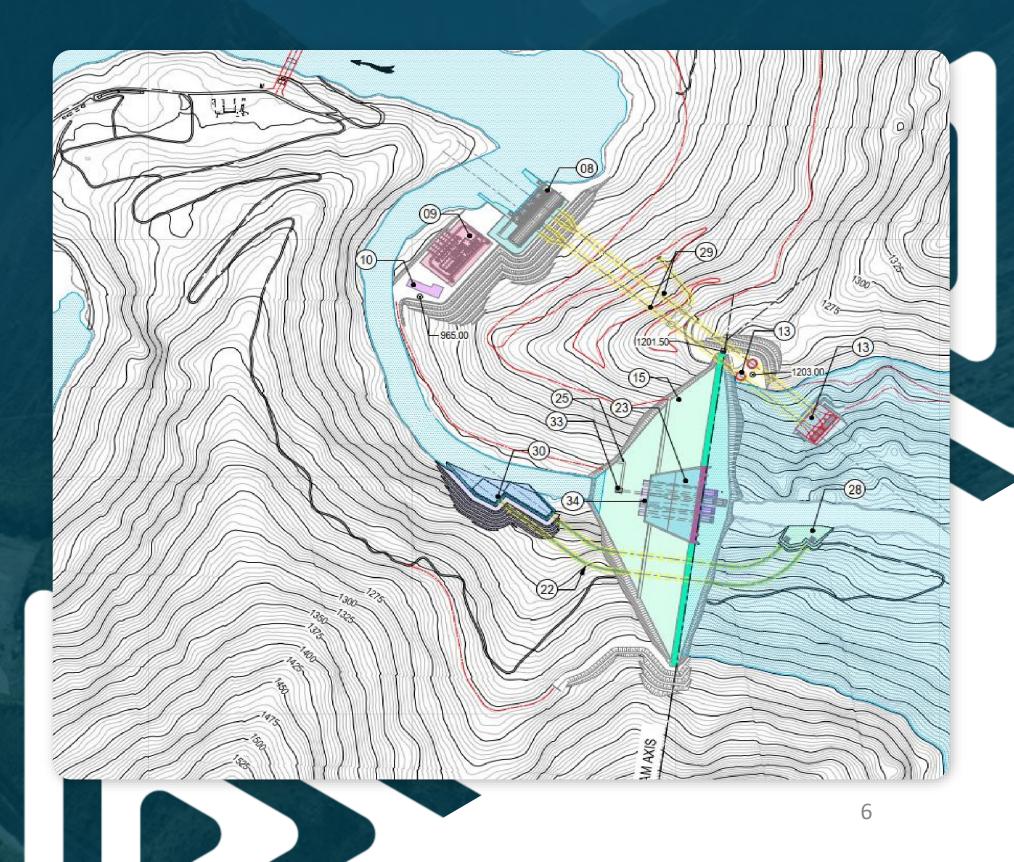
Investments (according to the Feasibility Study) million USD


Reservoir volume million m³

Dam height

m

Gravity dam RCCD


GENERAL LAYOUT

The general plan of the hydropower complex "Kambar-Ata HPP-1" includes the following:

A gravity dam constructed from roller-compacted concrete (RCC), with a maximum height of 261 m on deep foundations, featuring an uncontrolled spillway and rapid flow structures on the downstream face of the dam, as well as four medium-level outlets and one bottom outlet through the dam body. The powerhouse facility is located at the downstream toe of the dam, equipped with four turbine-generator units with a capacity of 470 MW. Water is supplied to each of the two turbine-generator installations via individual high-pressure tunnels and a shared double intake structure for the HPP

The 500 kV switchyard with gas-insulated switchgear (GIS) is located in a separate building next to the power station and connected to the 500 kV Datka-Kemin transmission line.

Two diversion tunnels are provided to divert the river chanr during the construction period

ALABUGA CASCADE OF HYDRO POWER PLANTS

MAIN INDICATORS OF THE ALABUGA HPP CASCADE

Name of HPP	Absolute Elevations of Water Levels			Reservoir capacity		Flow rates		Heads (Hydra	ulic Head)		Average Annual
	Full Supply Level (FSL), m	Dead Storage Level (DSL), m	Tailwater Level, m	Total Capacity, million m³	Active Storage, million m ³	Long-Term Average Flow, m³∕s	Design Flow Rate, m³∕s	Max, m Min, m	Design, m	Installed capacity, MW	Electricity Generation, million kWh
Arpanskaya HPP-1	2,625	2,565	2,180	310	288	18.5	40	406.5 346.5	383	136	556
Arpanskaya HPP-2	2,180	2,150	2,063	200	124	27.6	62.5	114.4 84.4	103.5	58	216.5
Makmalskaya HPP	2,063		1,815	27	-	27.6	55	230.8 -	230.8	113	464.5
Sazskaya HPP	1,815		1,575	19.8		29.1	55	223.5 -	223.5	108	472.9
TOTAL			A.		and .					415 MW	1 709.9 million kWb

CASCADE OF HPPS ON THE AT-BASHY RIVER

MAIN INDICATORS OF THE CASCADE OF HPPs ON THE AT-BASHY RIVER

Name of HPP	Absolute Elevations of Water Levels		Reservoir capacity		Flow rates		Heads (Hydraulic Head)			Installed	Average Annual	
	Full Supply Level (FSL), m	Dead Storage Level (DSL), m	Tailwater Level, m	Total Capacity, million m ³	Active Storage, million m ³	Long-Term Average Flow, m³/s	Design Flow Rate, m ³ /s	Max, m	Min, m	Design, m	capacity, MW	Electricity Generation, million kWh
Taldysuyskaya HPP-1	2,720	2,700	2,575	306.5	163	16.6	20	117.2	97.2	113	20	119.5
Taldysuyskaya HPP-2	2,575	1-	2,420	- /	-	16.6	20	150.6	-2	150.6	26.7	161
Oiterekskaya HPP-1	2,420	-	2,250		-	16.6	20	161.3	-	161.3	28.5	172.2
Oiterekskaya HPP-2	2,250	March N	2,150			16.6	20	96	-	96	17	102.6
Akdzharskaya HPP	1,990	1,960	1,904	278.3	218	33.8	60	83	53	75.3	40	199
TOTAL			and a								132.2 MW	754.3

KULANAK CASCADE HPP

MAIN INDICATORS OF THE KULANAK HPP CASCADE

		te Elevations ater Levels	of	Reservoir	capacity	Flow rates		
Name of HPP	Full Supply Level (FSL), m	Dead Storage Level (DSL), m	Tailwater Level, m	Total Capacity, million m³	Active Storage, million m ³	Long-Term Average Flow, m ³ /s	Design Flow Rate, m³/s	
At-Bashy HPP (Naryn river discharge)	1,997		1,830.3			84.5	105	
Aktalinskaya HPP	1,742		1,713.5	24		141.6	160	
Zhylan-Aryk HPP-1	1,713.3	Plant - mark	1,652			141.3	160	
Zhylan Aryk HPP-2	1,651.8		1,578.1			141.1	160	
TOTAL								

Heads (Hydraulic Head)

Design, m

Max, m Min, m

2

5

Average Annual Electricity Generation, million kWh

		351.6 MW	2,001.6 million kWh
9.5	69.5	98.6	503
6.5	56.5	80	503
6.8	26.8	38	238.9
45.8	145.8	135	756.7

Installed

capacity, MW

ORUKTAN HPP CASCADE IN THE UPPER REACHES OF THE NARYN RIVER

MAIN INDICATORS OF THE ORUKTAM HPP CASCADE ON THE NARYN RIVER

Name of HPP	Absolute Elevations of Water Levels			Reservoir capacity		Flow rates		Heads (Hydraulic Head)				Average Annual	
	Full Supply Level (FSL), m	Dead Storage Level (DSL), m	Tailwater Level, m	Total Capacity, million m ³	Active Storage, million m ³	Long-Term Average Flow, m³∕s	Design Flow Rate, m³∕s	Max, m	Min, m	Design, m	Installed capacity, MW	Electricity Generation, million kWh	
Oruktam HPP-1	2,600	2,550	2,480	561.3	431	35.9	70	118.5	68.5	97	60	254.3	
Oruktam HPP-2	2,480		1000	30		35.9	70				48	225.9	
Dzhanikelskaya	2,500	2,440	2,315	450.2	325.2	35.9	84	180.4	120.4	141.3	100	434	
TOTAL				-							208 MW	914.2 million kWh	

CHATKAL HYDRO POWER PLANT

CHATKAL HPP PROJECT

Dam

The station building is located at an elevation of 980.0 m

> **Location**: **Chatkal district, Jalal-Abad region**

Reservoir volume –

860 million m³

Average annual flow rate: 75.6 m³/sec

Height: 180 m

Length: 10 km

Area for construction: 1,600 ha

Installed capacity: 251 MW

Average annual generation: 1.68 billion kWh

Construction period: 5 years

Equity capital investments: 2,500 \$/kW

SARY-JAZ CASCADE

CONSTRUCTION OF 6 HYDRO POWER PLANTS ON THE SARY-JAZ RIVER

Total project cost

2.2–3 billion US dollars

Project construction site

Kyrgyz Republic, Issyk-Kulregion, Ak-Suu district

Total cascade capacity – 1,100 MW

Installed capacity, MW

Kuylyuk HPP – 170 MW; Enilchek HPP – 60 MW Kaindy-Enilchek HPP – 20 MW; Ak-Shyirak HPP – 350 MW Kok-Shaal HPP – 250 MW; Kuyukap HPP – 250 MW

Average annual generation, million kWh

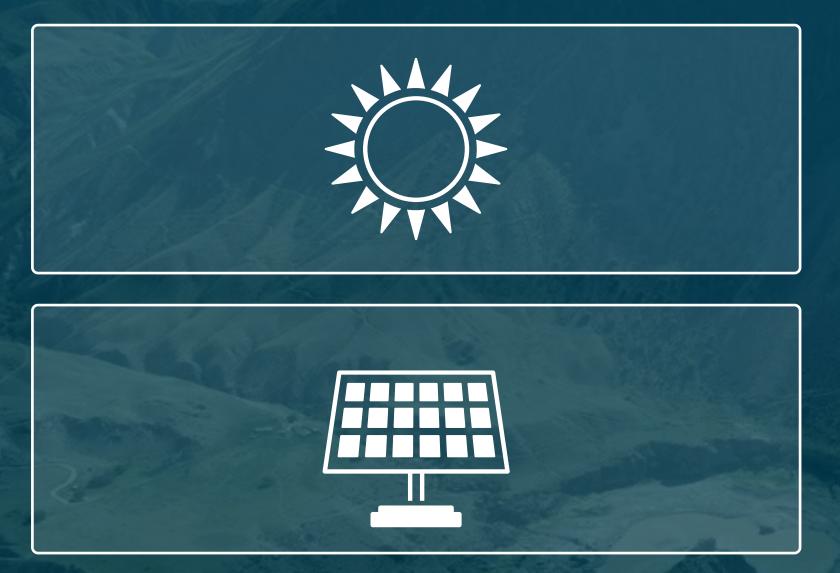
Over 4,760 million kWh

Project impact on the environment

As there are conservation areas and specially protected natural territories in the Sary-Jaz river basin, an Environmental Impact Assessment is necessary

PROSPECTIVE SITES FOR THE CONSTRUCTION OF SMALL HPPS

PROSPECTIVE SITES FOR SMALL HPPS


No.	Name of site/river	Capacity, MW	Waterflow, m ³ /sec	Head, m	Annual electricity generation, million kWh	Loc
1	Tar Kapchygai	30	97.0	40	121.0	Osh
2	Tar Upper	17	75.0	27	67.0	Osh
3	Kara-Kulja	14.1	20	90	85.5	Osh
4	Chon-Ak-Suu	11.4	5	260	63.4	lssy
5	Talas	7	18.5	43	36.7	Tala
6	Chon-Zhargylchak	4.9	2.27	316	30	lssy
7	Kara-Kujur	5	10	37	20.5	Nar
8	On-Archa	3	12.0	32	17.7	Nar
9	Kuturgu	2.3	1.06	241	11.89	lssy
10	Kurmenty	2.3	1.05	281	11.9	lssy

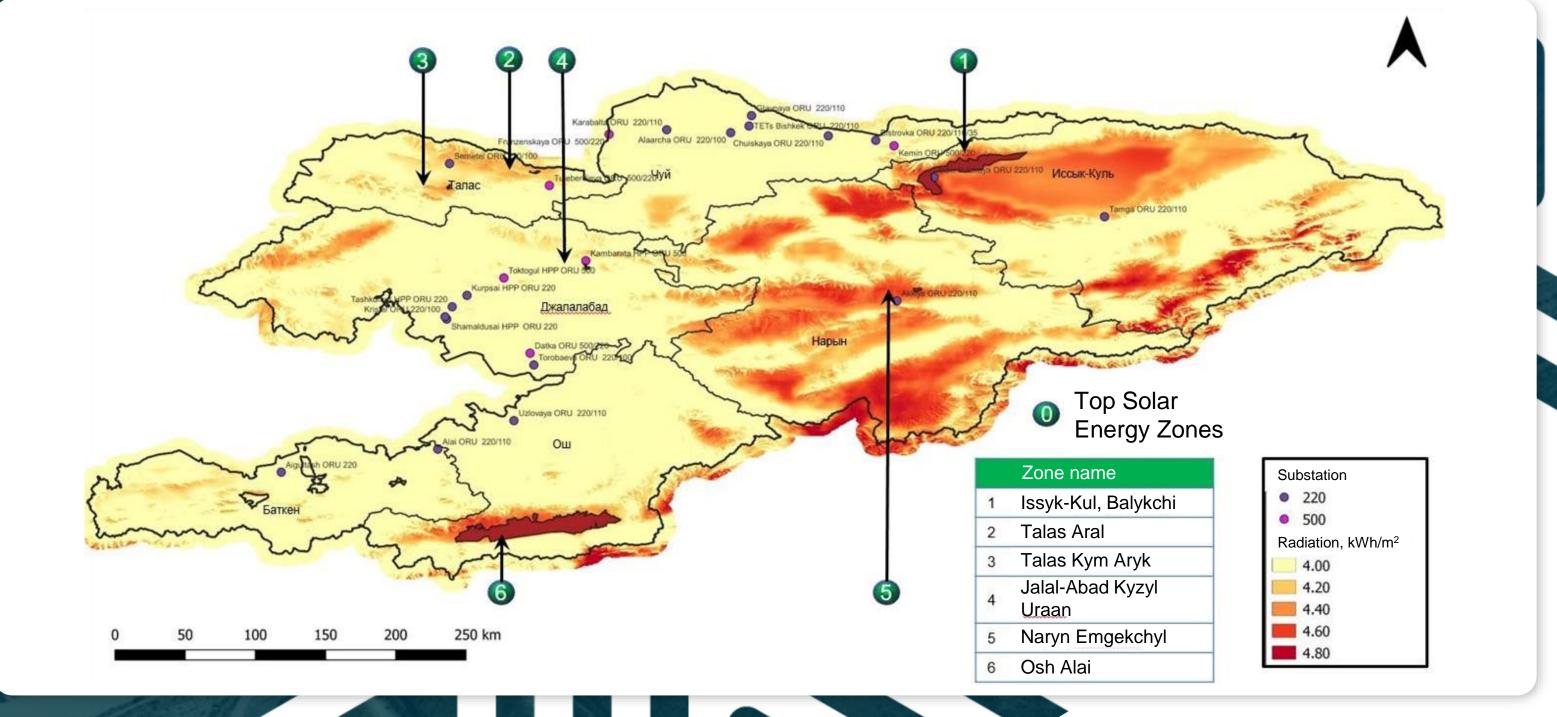
ocation

- sh region, Kara-Kulja district, Tar River
- sh region, Kara-Kulja district, Tar River
- sh region, Kara-Kulja district, river Kara-Kulja
- yk-Kul region, Issyk-Kul district, river Chon-Ak-Suu
- las region, Talas district, river Talas
- syk-Kul region, Jeti-Oguz district, river Chon-Zhargylchak
- aryn region, Kochkor district, river Kara-Kujur
- aryn region, Naryn district, river On-Archa
- syk-Kul region, Tyup district, river Kuturgu
- syk-Kul region, Tyup district, river Kurmenty

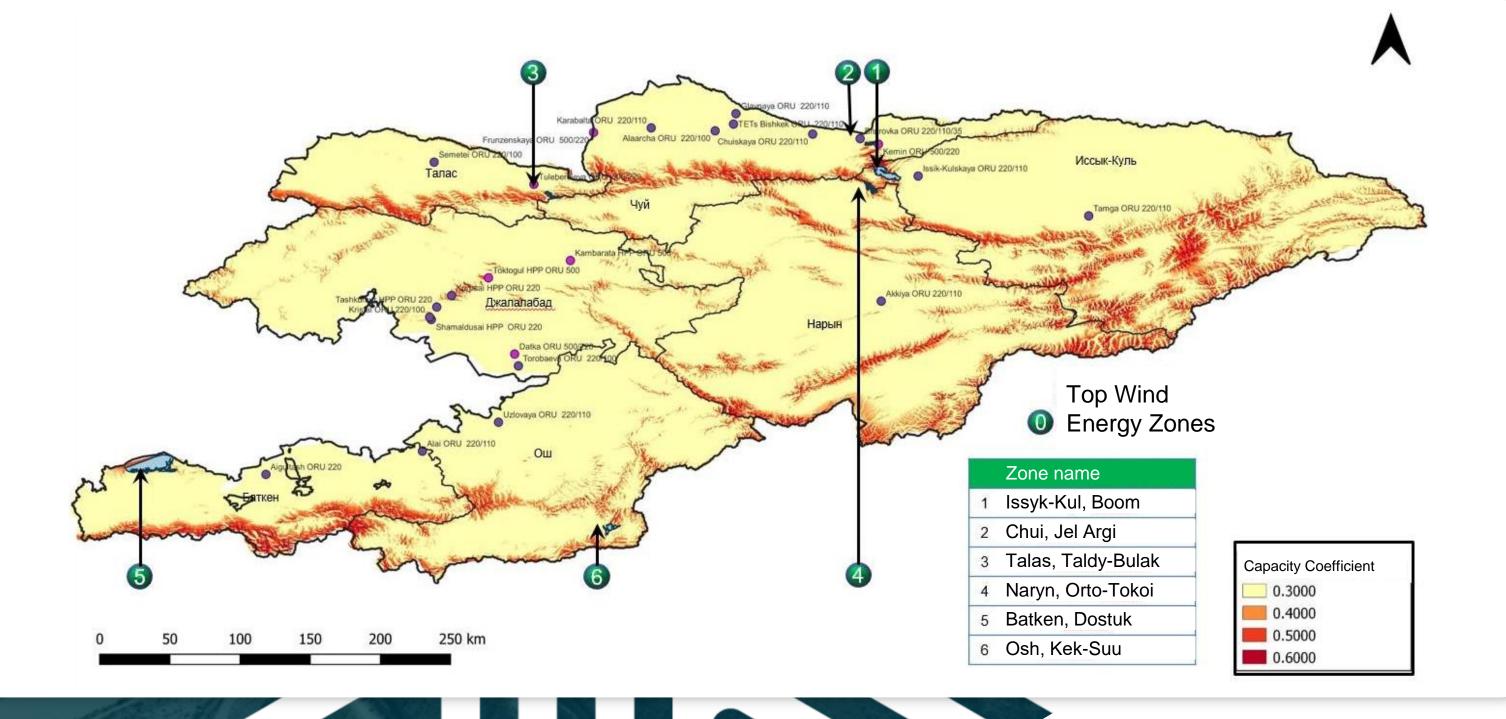
RENEWABLE ENERGY SOURCES POTENTIAL

2,100–2,900 h

Average annual duration of sunshine Annual irradiation on the surface 1,700 kWh/m²



2 billion kWh Wind energy potential



POTENTIAL ZONES FOR CONSTRUCTION OF SOLAR POWER PLANTS

POTENTIAL ZONES FOR THE CONSTRUCTION OF WIND POWER PLANTS

DEVELOPMENT OF HIGH-VOLTAGE NETWORKS FOR RECEIVING AND TRANSMITTING POWER FROM RENEWABLE ENERGY SITES

Projects for reconstruction and modernization	Project cost	Implementation period
Construction 220/110/10 kV substation in Uchkun, AT 2*125 MVA, connection to 220 kV transmission line Kemin–Ala-Archa	34.5 million \$ (substation)+2.82 million \$ (transmission line)	2026–2027
Construction 220 kV transmission line Tamga–Karakol and 220/110/10 kV Substation Karakol with installation of AT 2*125 MVA near Chelpek village and Karakol city	34.5 million \$ (substation) + 12.69 million \$ (transmission line)	2026–2028
Construction 500/220/10 kV substation Bishkek, AT 2*501 MVA, construction of 500 kV transmission line Frunzenskaya–Bishkek–Kemin	148.13 million \$ (substation) + 156 million \$ (transmission line)	2028–2030
Construction of 220/110/10 kV substation Isanov with two ATs of 125 MVA and 220 kV transmission line Datka–Uzlovaya-1, 2	34.5 million \$ (substation) + 1.4 million \$ (transmission line)	2026–2027
Construction of 500 kV substation Balykchy and 500 kV transmission line Kemin–Balykchy	193.5 million \$	2028–2030
Construction of 500 kV transmission line Kemin–Torugart	218 million \$	2028–2030
Conversion 110/35/10 kV substation Alamedin to 220 kV with two ATs of 125 MVA and construction of 220 kV transmission line Bishkek 500–Alamedin-1, 2	34.5 million \$ (substation) + 1.9 million \$ (transmission line)	2028–2030
NOTE: For the integration of renewable energy sources into the energy system, it is necessative investment projects and increase the transmission capacity of substations and transmission		

INCREASING THE TRANSMISSION CAPACITY OF SUBSTATIONS AND TRANSMISSION LINES

Facility name	Costs, million KGS	Note
Main substation construction, 3rd stage, AT 250 MVA	315	The incr
Replacement of 110 kV overhead line wire Main–Kyzyl-Asker-1, 2 with a larger cross-section (240 mm ²)	10.4	increase 745 MV Costs foi
Replacement of 110 kV overhead line wire CHP–Parkovaya-1, 2 with a larger cross-section (240 mm ²)	8.1	Costs for
Kara-Balta substation – replacement of 3 ATs with 200 MVA units	450	
Replacement of 220 kV overhead line wire Kemin–Chui with a larger cross-section (400 mm ²)	74.1	
Issyk-Kul substation – replacement of 2 ATs with 250 MVA units	300	
Replacement of 110 kV overhead line wire Issyk-Kul–Cholpon-Ata-1, 2 and 110 kV Cholpon-Ata–Ananyevo with a larger cross-section (300 mm ²)	104	
Replacement of 220 kV overhead line wire Issyk-Kul–Tamga with a larger cross-section (400 mm ²)	210.2	

rease in capacity will be 745 MVA — accordingly, an e in capacity on the part of the 110/35/10/0.4 kV side by /A is required

or the 110 kV substation: 5.8 billion KGS

or 10/0.4 kV transformer substations: 1.64 billion KGS

INCREASE OF TRANSMISSION CAPACITY OF SUBSTATIONS AND TRANSMISSION LINES

Facility name	Costs, mln. KGS	Rema
Torobaeva substation, replacement of 3 AT to 200 MVA	450	The in
Construction of the second 110 kV overhead line Torobaev-Kara-Suu (185 mm2)	60.1	increa by 600
Alai substation replacement of AT-2 with 125 MVA	130	Costs
Aigul-Tash substation construction of the 2nd stage of AT	150	Costs · — substa
Replacement of 220 kV Uzlovaya–Alai transmission line conductor with larger cross-section	96.5	- 34836

arks

- ncrease in capacity will be 600 MVA accordingly, an ase in capacity on the part of the 110/35/10/0.4 kV side 00 MVA is required
- s for the construction of 110 kV substations: 4.7 billion KGS s for the construction of 10/0.4 kV transformer tations: 1.3 billion KGS

STATE SUPPORT (PREFERENCES)

Protection of foreign investments

Assistance in obtaining licenses, permits, and approvals, including allocation of land

Equal conditions of operation for foreign and local companies

Opportunities for extensive cooperation within the framework of PPP

Available qualified personnel

Exemption for import of equipment for construction of renewable energy facilities

Payment in foreign currency

Guaranteed tariff for green energy projects

WE INVITE YOU TO INVEST IN THE ENERGY SECTOR OF THE KYRGYZ REPUBLIC!

Ibrayev T.O.